Alright this is driving me crazy. I'm trying to figure out when we actually need to use 'such that' in math/logical expressions. There seems to be quite a bit of inconsistency but I wanted to check to be sure.
I've seen 3 ways of doing it...
- My discrete mathematics professor IIRC always used a 'such that' after an existential qualifier but not after a universal qualifier... so he'd use ∃x ∈ N: x > 1, but then also ∀x ∈ N, x > 0 (I think he'd use a comma here)
- These guys and a couple others I've seen online use no punctuation unless indicating parentheses: What does a period in between quantifiers mean?
- But others still use 'such that' (:) before all qualifiers: Does order of qualifiers matter in FOL formula?
I believe my math professor did what he did because it translated cleanly to English. Since you'd say "There exists an x such that x > 3" but you could also say "For all x, x=x". But I'm trying to figure out what the 'such that' symbol actually means in math, because I don't think the way it works in English necessarily makes sense. Wolfram Alpha defines the 'such that' symbol as 'indicating a condition in the definition of a mathematical object', and this make sense but they introduce yet another convention of qualifiers after a such that since q∈Z ≡ ∀q∈Z. And of course this convention makes no sense when translated to English in the case when for example when we'd say "x > 3: ∃x ∈ N" which translates to "x is greater than three such that there exists an x in naturals".
So anyways my question is what are you actually supposed to do? It looks like there are multiple conventions so which is best and most commonly used?
