I'm not sure what your background is so I'll offer a most elementary way to reason it specific to $\mathbb{Z}$, although as ThomasGrubb explained there are far more general results (see Nakayama's Lemma).
If $1 \oplus 0 \rightarrow a \oplus b$ and $0 \oplus 1 \rightarrow c \oplus d$ then the homomorphism is completely defined by $x \oplus y \rightarrow (ax + cy) \oplus (bx + dy)$
In matrix notation,
$\begin{bmatrix}
x \\
y
\end{bmatrix} \rightarrow
\begin{bmatrix}
a & c \\
b & d
\end{bmatrix} \begin{bmatrix}
x \\
y
\end{bmatrix}
$
Clearly the matrix is invertible iff our original homomorphism is.
The problem thus boils down to showing that a ($2 \times 2$) integer matrix has full column rank iff it is invertible. This is easy, because if it has full column rank then we can find $x_1,y_1$ such that
$$\begin{bmatrix}
1 \\
0
\end{bmatrix} =
\begin{bmatrix}
a & c \\
b & d
\end{bmatrix} \begin{bmatrix}
x_1 \\
y_1
\end{bmatrix}
$$ and similarly $x_2, y_2$ such that
$$\begin{bmatrix}
0 \\
1
\end{bmatrix} =
\begin{bmatrix}
a & c \\
b & d
\end{bmatrix} \begin{bmatrix}
x_2 \\
y_2
\end{bmatrix}
$$
Thus
$$\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix} =
\begin{bmatrix}
a & c \\
b & d
\end{bmatrix} \begin{bmatrix}
x_1 & x_2 \\
x_2 & y_2
\end{bmatrix}
$$
The above argument immediately generalizes to $\bigoplus_n \mathbb{Z}$.