I'm currently studying some topics in measure theory and I am not sure how to prove the following:
Let $X$ a set, $\mathcal A$ a $\sigma$-algebra on X. Consider the set: $$ca(\mathcal A) = \{\mu:\mathcal A \to \mathbb R|\; \mu \; \text{is a finite signed measure} \}$$
Note that $ca(\mathcal A)$ is a subspace of $l_\infty(\mathcal A)$. I want to prove the following:
- $\|\mu\|\stackrel{def}{=} |\mu|(X)$ defines a norm on $ca(\mathcal A)$;
- $(ca(\mathcal A), \| \cdot \|)$ is a Banach Space
- The following inequality holds: $$\|\mu\|_\infty \leq \|\mu\| \leq 2\|\mu\|_\infty,$$ where $\|\mu\|_\infty\stackrel{def}{=} \sup\limits_{A\in \mathcal A} |\mu(A)|$
I was able to prove (1) using Hahn-Jordan decomposition and the inequality on (3) is straightforward. Although I could not prove (2).
What I tried:
If $(\mu_n)_{n\in \mathbb N}$ is Cauchy sequence on $ca(\mathcal A)$, it follows from (3) that $(\mu_n)$ is point-wise convergent to $\nu\stackrel{def}{=} \lim \mu_n$:
Given $\varepsilon >0$, there is $n_0 \geq 1$ such that: $$m>n \geq n_0 \implies \|(\mu_m - \mu_n)\|_\infty\leq \|\mu_m - \mu_n\| <\varepsilon.$$
Hence, for all $A\in \mathcal A$, $(\mu_n(A))$ is convergent and $\nu$ is well defined.
I am not sure how to prove that $\nu$ is a signed measure in $ca(\mathcal A)$:
- $\nu(\emptyset)=\lim\mu_n(\emptyset) = 0$;
- Since $(\mu_n(X))$ is convergent sequence on $\mathbb R$, it is bounded. So $\nu(X) = \lim \mu_n(X)$ is finite.
Why, given a family $(A_i)_{i \in \mathbb N}\subset \mathcal A$ of disjoint sets, we have: $$\nu (\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty}\nu(A_i)$$
EDIT: I had an idea:
Given a family $(A_i)_{i \in \mathbb N}\subset \mathcal A$ of disjoint sets, define $B_i = \bigcup\limits_{j=1}^i A_j$. The family of $(B_i)$ is increasing, $\cup B_i = \cup A_i$, and:
\begin{align*} \nu(\bigcup_{i=1}^\infty A_i) &= \nu(\bigcup_{i=1}^\infty B_i) \\ &= \lim_{i} \nu(B_i)\\ &= \lim_{i} \lim_{n} \mu_n (\bigcup_{j=1}^i A_j)\\ &= \lim_{i} \lim_{n} \sum_{j=1}^i \mu_n(A_j)\\ &= \lim_{i} \sum_{j=1}^i \lim_{n} \mu_n(A_j) \\ &= \sum_{i=1}^\infty \nu(A_i). \end{align*}
Can anyone check if this is correct?
EDIT2: I forgot to check the convergence $\mu_n \stackrel{\|\cdot\|}{\to}\nu$ and I struggling with it.