I have to prove this :
Let $R$ be a commutative ring and : $f : R^2 \rightarrow R$ a morphism of $R$-module. I want to show : $\ker f$ is a free module.
My first try is to say : $R^2/\ker(f) \cong R$, so : $R^2/\ker(f) = <\overline{\alpha}>$, with $\alpha \notin \ker(f)$ (otherwise, $f$ would not be surjective). But it brings me nowhere.
So, my second try (inspired of a question posted here) : let $u \in R^2$ such that : $f(u) = 1$ by the surjectivity of $f$, and we are considering $V = <u>$. We can show that : $$ R^2 = V \bigoplus \ker(f)$$
We have aswell, by considering a base $(e_1, e_2)$ of $R^2$, that : $e_1 = z_1 + \lambda_1u$, and $e_2 = z_2 + \lambda_2u$, with $z_1, z_2 \in \ker(f)$. Then, let $x \in \ker(f)$. We have :
$x = x_1e_1 + x_2e_2 = x_1z_1 + x_2z_2 + x_1\lambda_1u + x_2\lambda_2u$, so :
$x- (x_1z_1 + x_2z_2) \in V \cap \ker(f) = {0}$, and then : $x = x_1z_1 + x_2z_2$, and then : $\ker f = <z_1, z_2>$.
The problem is even if $(z_1, z_2)$ is generating $\ker f$, I don't succeed to show it's a free family.
Someone could help me ?
Thank you !