Since the thread mentioned in my comment above is closed, I am not sure that you have sufficient reputation to see anything. I decided to repost my answer, even if this is not the kind of solutions you requested for, and frankly, I do not have any idea how to do the job without contour integration. The question in that thread is here.
Compute $$S:= \int_{-1}^{+1}\,\frac{x\,\ln(1-x)}{\big(\pi^2+4\,\operatorname{arctanh}^2(x)\big)^2}\,\text{d}x\,.$$
Note that
$$S=\int_{-1}^{+1}\,\frac{x\,\ln(1-x)}{\Big(\pi^2+4\,\big(\text{arctanh}(x)\big)^2\Big)^2}\,\text{d}x=-\int_{-1}^{+1}\,\frac{x\,\ln(1+x)}{\Big(\pi^2+4\,\big(\text{arctanh}(x)\big)^2\Big)^2}\,\text{d}y$$
That is,
$$S=-\frac12\,\int_{-1}^{+1}\,\frac{x\,\ln\left(\frac{1+x}{1-x}\right)}{\Big(\pi^2+4\big(\text{arctanh}(x)\big)^2\Big)^2}\,\text{d}x=-\,\int_{-\infty}^{+\infty}\,\frac{t\,\tanh(t)\,\big(\text{sech}(t)\big)^2}{\left(\pi^2+4t^2\right)^2}\,\text{d}t$$
where $t:=\text{arctanh}(x)=\frac{1}{2}\,\ln\left(\frac{1+x}{1-x}\right)$. Note that
$$-S=\int_0^1\,\frac{x\,\ln\left(\frac{1+x}{1-x}\right)}{\Bigg(\pi^2+\ln^2\left(\frac{1+x}{1-x}\right)\Bigg)^2}\,\text{d}x$$
is the required integral $I$ in Zacky's question.
For each positive integer $N$, consider the contour $C_N$ (oriented in the counterclockwise direction), which is defined to be
$$\small \left[-N^2\pi,+N^2\pi\right]\cup \left[+N^2\pi,+N^2\pi+N\pi\text{i}\right]\cup\left[+N^2\pi+N\pi\text{i},-N^2\pi+N\pi\text{i}\right]\cup\left[-N^2\pi+N\pi,-N^2\pi\right]\,.$$
We note that
$$\lim_{N\to\infty}\,\oint_{C_N}\,f(z)\,\text{d}z=\int_{-\infty}^{+\infty}\,f(t)\,\text{d}t=-S\,,$$
where
$$f(z):=\frac{z\,\tanh(z)\,\big(\text{sech}(z)\big)^2}{\left(\pi^2+4z^2\right)^2}\text{ for all }z\in\mathbb{C}\setminus\Biggl\{\left(n-\frac12\right)\pi\text{i}\,\Big|\,n\in\mathbb{Z}\Biggr\}\,.$$
However,
$$\lim_{N\to\infty}\,\oint_{C_N}\,f(z)\,\text{d}z=2\pi\text{i}\,\sum_{n=1}^\infty\,\text{Res}_{z=\left(n-\frac12\right)\pi\text{i}}\big(f(z)\big)\,.$$
Let $r_n:=\text{Res}_{z=\left(n-\frac12\right)\pi\text{i}}\big(f(z)\big)$ for $n=1,2,3,\ldots$. Then, with very tedious, but absolutely standard and boring, algebraic manipulations (meaning that I refuse to write my two-page calculations here), we get
$$r_1=-\frac{3\text{i}}{32\pi^5}-\frac{\text{i}}{480\pi}$$
and, for $n=2,3,4,\ldots$,
$$r_n=\frac{3(2n-1)(2n^2-2n+1)\text{i}}{32\pi^5n^4(n-1)^4}=\frac{3\text{i}}{32\pi^5}\,\left(\frac{1}{(n-1)^4}-\frac{1}{n^4}\right)\,.$$
Ergo,
$$\sum_{n=1}^\infty\,r_n=-\frac{\text{i}}{480\pi}\,.$$
Thus,
$$S=-\int_{-\infty}^{+\infty}\,f(t)\,\text{d}t=-\lim_{N\to\infty}\,\oint_{C_N}\,f(z)\,\text{d}z=-2\pi\text{i}\,\sum_{n=1}^\infty\,r_i=-\frac{1}{240}\,.$$
Therefore,
$$\int_0^1\,\frac{x\,\ln\left(\frac{1+x}{1-x}\right)}{\Bigg(\pi^2+\ln^2\left(\frac{1+x}{1-x}\right)\Bigg)^2}\,\text{d}x=I=-S=\frac{1}{240}\,.$$