Finding value of $\displaystyle \lim_{n\rightarrow \infty}\bigg(\frac{(kn)!}{n^{kn}}\bigg)^{\frac{1}{n}}$ for all $k>1$
Try: I have solved it using stirling Approximation
$\displaystyle n!\approx \bigg(\frac{n}{e}\bigg)^n\sqrt{2\pi n}$ for laege $n$
So we have $\displaystyle \lim_{n\rightarrow \infty}\bigg(\frac{kn}{e}\bigg)^{kn}\cdot \bigg(\sqrt{2\pi k n}\bigg)^{\frac{1}{n}}\cdot \frac{1}{n^k}=\bigg(\frac{k}{e}\bigg)^k$
Could some help me how to solve it without
stirling Approximation
Thanks.