I'm trying to express
$$A = \left[ \begin{array} { r r r } { 2 } & { - 2 } & { - 4 } \\ { - 1 } & { 3 } & { 4 } \\ { 1 } & { - 2 } & { - 3 } \end{array} \right]$$
as the sum of a symmetric and a skew symmetric matrix.
So far I have tried this:
converting into transpose
$A ^ { \prime } = \left[ \begin{array} { c c c } { 2 } & { - 1 } & { 1 } \\ { - 2 } & { 3 } & { 4 } \\ { - 4 } & { 4 } & { - 3 } \end{array} \right]$
well this dont seem to be symmteric matrix according to me. are there steps to be taken.
and for skew symmteric matrix i tried to do like this
transpose of equation $A ^ { \prime } = \left[ \begin{array} { c c c } { 2 } & { - 1 } & { 1 } \\ { - 2 } & { 3 } & { 4 } \\ { - 4 } & { 4 } & { - 3 } \end{array} \right]$
took minus as common $A ^ { \prime } = \left[ \begin{array} { c c c } { - 2 } & { 1 } & { - 1 } \\ { 2 } & { - 3 } & { 2 } \\ { 4 } & { - 4 } & { 3 } \end{array} \right]$
can you guide me how to proceed with them