Hint:
$$(1-x)^n=\sum_{k=0}^n\binom{n}{k}(-1)^kx^k\tag{1}$$
Can you manipulate this sum using differentiation/integration?
I take it OP is satisfied, so I'll expand on my answer:
To get OP's sum we will divide $(1)$ by $x$ and integrate it, however not every term in $(1)$ is divisible by $x$. Instead it is easier to consider: $$(1-x)^n-1=\sum_{k=1}^n\binom{n}{k}(-1)^kx^k$$ Then the rest will fall out:
$$\int_0^1\frac{(1-t)^n-1}{t}dt=\int_0^1\sum_{k=1}^n\binom{n}{k}(-1)^kt^{k-1}dt=\sum_{k=0}^{n}\binom{n}{k}\frac{(-1)^k}{k}$$ The integral on the left can be evaluated by a simple substitution $u=1-t$, this gives $$-\int_{1}^{0}\frac{u^n-1}{1-u}du=\sum_{k=0}^{n}\binom{n}{k}\frac{(-1)^k}{k}\\\int_0^1\frac{1-u^n}{1-u}du=-\sum_{k=0}^{n}\binom{n}{k}\frac{(-1)^k}{k}=\sum_{k=0}^{n}\binom{n}{k}\frac{(-1)^{k+1}}{k}$$ We also know that $$\frac{1-u^n}{1-u}=1+u+u^2+\dots+u^{n-1}$$ We find that $$\int_0^1 1+u+u^2+\dots+u^{n-1}du=\sum_{k=1}^{n}\frac{1}{k}=H_n$$