Let
- $(\Omega,\mathcal A)$ and $(\Omega_i,\mathcal A_i)$ be measurable spaces
- $X_i:\Omega\to\Omega_i$ be $(\mathcal A,\mathcal A_i)$-measurable
Are we able to show that $\sigma((X_1,X_2))=\sigma(X_1,X_2)$?
By definition, $$\sigma((X_1,X_2))=(X_1,X_2)^{-1}(\mathcal A_1\otimes\mathcal A_2)\tag1$$ and we know that this is equal to $$\sigma((X_1,X_2)^{-1}(\mathcal E_1\times\mathcal E_2),\tag2$$ if $\mathcal E_i\subseteq\mathcal A_i$ with $\sigma(\mathcal E_i)=\mathcal A_i$. On the other hand, $$\sigma(X_1,X_2)=\sigma(\sigma(X_1)\cup\sigma(X_2))=\sigma(X_1^{-1}(\mathcal A_1)\cup X_2^{-1}(\mathcal A_2))\tag3$$ and $$X_i^{-1}(\mathcal A_i)=\sigma(X_i^{-1}(\mathcal E_i)).\tag4$$ But I don't see that the claim follows from these equalities.