For $r\geq 1$, we have by Minkowski's Inequality that
$$X+1=\big(X^r+0^r\big)^{\frac{1}{r}}+\big(0^r+1^r\big)^{\frac1r}\geq \left((X+0)^r+(0+1)^r\right)^{\frac{1}{r}}=\left(1+X^r\right)^{\frac{1}{r}}\text{ for all }X\geq0\,.$$
This shows that
$$(1+X)^r\geq 1+X^r\,.$$
Note that the inequality becomes an equality iff $r=1$ or $X=0$. Now, for $k,l\in\mathbb{R}_{>0}$ with $k\leq l$, we then see that, with $X:=x^k$ and $r:=\frac{l}{k}$, we have
$$\left(1+x^k\right)^{\frac{l}{k}}\geq 1+x^l\,,\text{ or }\left(1+x^k\right)^l\geq\left(1+x^l\right)^k\,,$$
for all $x>0$. The equality case is when $x=0$ and when $k=l$. This problem is a particular case where $l=k+1$. Furthermore, we conclude that the function $f:\mathbb{R}_{\geq0}\times\mathbb{R}_{>0}\to\mathbb{R}$ defined by $$f(x,k):=\left(1+x^k\right)^{\frac1k}\text{ for all }x\geq0\text{ and }k>0$$
is a nondecreasing function in $k$, and it is strictly increasing with respect to $k$ for $x>0$.