The math.stackexchange community did a very good job at helping me in my previous question, especially Eric Wofsey. So I implore you to continue helping me spot flaws in my reasoning.
Let $(X, \mu)$ be a finite measure space, and let $\{E_i\}_{i = 1}^{\infty}$ be a sequence of measurable sets in $X$. Then the limit superior and limit inferior of $\{E_i\}_{i = 1}^{\infty}$ is defined such that
$\limsup\limits_{n\to\infty} E_n = \bigcup\limits_{n=1}^{\infty}\bigcap\limits_{k\geq n} E_k, \;\;\; \liminf\limits_{n\to\infty} E_n = \bigcap\limits_{n=1}^{\infty}\bigcup\limits_{k\geq n} E_k.$
Prove that
$\mu(\liminf\limits_{n\to\infty} E_n) \leq \liminf\limits_{n\to\infty} \mu(E_n) \leq \limsup\limits_{n\to\infty} \mu(E_n) \leq \mu(\limsup\limits_{n\to\infty} E_n)$
Attempted proof. Let $\{L_n\}_{n=1}^\infty = \bigcap\limits_{k\geq n} E_k$ and let $\{M_n\}_{n=1}^\infty = \bigcup\limits_{k\geq n} E_k$. Then $\{L_n\}_{n=1}^\infty$ is an increasing sequence and $\{M_n\}_{n=1}^\infty$ is a decreasing sequence.
Using the continuity of measures, we know that $\mu\left(\limsup\limits_{n\to\infty} E_n\right) = \mu\left(\bigcup\limits_{n=1}^\infty L_n\right) = \lim\limits_{n\to\infty} \mu(L_n) = \mu(L)$ where $L$ is the maximal element of the chain and that $\mu\left(\liminf\limits_{n\to\infty} E_n\right) = \mu\left(\bigcap\limits_{n=1}^\infty M_n\right) = \lim\limits_{n\to\infty} \mu(M_n) = \mu(M)$ where $\mu(M)$ is the minimal element of the chain.
$\mu(M) \leq \liminf\limits_{n\to\infty} \mu(E_n)$ because the minimal element of the chain is less than the minimal element of any subsequence of the chain. $\limsup\limits_{n\to\infty} \mu(E_n) \leq \mu(L)$ because the maximal element is greater than the maximal element of any subsequence of the chain. And $\liminf\limits_{n\to\infty} \mu(E_n) \leq \limsup\limits_{n\to\infty} \mu(E_n)$ is obvious. Taken together this proves it voila.