We have the arithmetic function $$f(n)=\sum_{d\mid n}\mu (d)\cdot d$$ I want to show that if $n$ is divisible by $p^2$ for some prime $p$ then $\displaystyle{\sum_{d\mid n}f(d)\mu \left (\frac{n}{d}\right )=0}$.
From the first subquestion we have that $f\left (p_1^{e_1}\cdots p_k^{e_k}\right )=(-1)^k\cdot (p_1-1)\cdots (p_k-1)$.
$$$$
I have done the following:
We have that $n=p^2\cdot k$, where $k=q_1^{a_1}\cdots q_y^{a_y}$.
\begin{align*}\sum_{d\mid n}f(d)\mu \left (\frac{n}{d}\right )&=\sum_\limits{0\leq\beta\leq 2 \\ 0\leq e_i\leq a_i}f\left (p^{\beta}\cdot q_1^{e_1}\cdots q_y^{e_y}\right )\mu \left (\frac{p^{2}\cdot q_1^{a_1}\cdots q_y^{a_y}}{p^{\beta}\cdot q_1^{e_1}\cdots q_y^{e_y}}\right ) \\& =\sum_\limits{0\leq\beta\leq 2 \\ 0\leq e_i\leq a_i}f\left (p^{\beta}\cdot q_1^{e_1}\cdots q_y^{e_y}\right )\cdot \mu \left (p^{2-\beta}\right )\cdot \mu\left (q_1^{a_1-e_1}\right )\cdots \mu \left (q_y^{a_y-e_y}\right ) \\ & = \sum_\limits{1\leq\beta\leq 2 \\ a_i-2\leq e_i\leq a_i}f\left (p^{\beta}\cdot q_1^{e_1}\cdots q_y^{e_y}\right )\cdot (-1)^{2-\beta}\cdot (-1)^{a_1-e_1}\cdots (-1)^{a_y-e_y}\end{align*}
Is everything correct so far? How could we continue? Do we maybe apply the first subquestion? But we can use this result only if $(p,q_i)=1$, $\forall 1\leq i\leq y$, right?