Here they give a classic decomposition but I'm not sure if there's a quick method to arrive at the right hand side from the left, or if I should just memorize this decmomposition.
Thanks
Here they give a classic decomposition but I'm not sure if there's a quick method to arrive at the right hand side from the left, or if I should just memorize this decmomposition.
Thanks
If you consider this as a polynomial in $x$, then $x=-(a+b)$ is a root of left hand side polynomial. Then factorize.
Another approach could be to use $\omega$, the complex cube root of unity. $$LHS=(x+a+b)(x+a\omega+b\omega^2)(x+a\omega^2+b\omega)$$
Another approach could be to add and subtract $3x^2a+3xa^2$ term and then factor. \begin{align}x^3+a^3+b^3-3xab & = x^3+a^3+3x^2a+3xa^2+b^3-3xab-3x^2a-3xa^2 \\ & =(x+a)^3+b^3-3xa(x+a+b)\\ &= (x+a+b)((x+a)^2+b^2-(x+a)b)-3xa(x+a+b) \\ \end{align}
A straightforward way (maybe not that quick, but easy) is the following. Write $$ a^3 + b^3 + x^3 -3abx = (a + b + x)^3 - 3(a^2b + a^2 x + ab^2 + ax^2 + b^2x + bx^2 + 3abx) $$ and $$ a^2b + a^2 x + ab^2 + ax^2 + b^2x + bx^2 + 3abx = (a + b + x)(ab + bx + ax) $$ concluding with the final result.
A thing to remember is to use the expression $(a + b + x)^3$ and the rest is just technique!
$$x^3+a^3+b^3-3xab=x^3+a^3+b^3+3a^2b+3ab^2-3xab-3a^2b-3ab^2=$$ $$=x^3+(a+b)^3-3ab(x+a+b)=(x+a+b)(x^2-x(a+b)+(a_+b)^2-3ab)=$$ $$=(x+a+b)(x^2+a^2+b^2-xa-xb-ab).$$
$$x^3+a^3+b^3-3abx$$
$$=x^3+(a+b)^3-3ab(a+b)-3abx$$
$$=\underbrace{(x+a+b)}\{x^2-x(a+b)+(a+b)^2\}-3ab\underbrace{(x+a+b)}$$
$$=?$$