Does the series $$\sum_{k=0}^{\infty}{\arctan \left(\frac{\sqrt{3}/2}{1/2+k}\right)}$$ diverge ?
This is part of a larger problem, and I am trying to prove the following: we start with the point $\omega = e^{i\frac{\pi}{3}}$ and consider the points $\omega, \omega + 1, \omega + 2,...$ and I want to prove that $Arg(\omega) + Arg(\omega+1) + Arg(\omega+2) + ...$ diverges.