Let $\alpha, \beta >0.$
Can we expect to choose differentiable $f:\mathbb R \to [0,1]$ such that $f(x+\alpha)=0$ if $x\leq 0,$ and $f(x-\alpha)=1$ if $x\geq \beta$? If so, can we make $f$ smooth?
Let $\alpha, \beta >0.$
Can we expect to choose differentiable $f:\mathbb R \to [0,1]$ such that $f(x+\alpha)=0$ if $x\leq 0,$ and $f(x-\alpha)=1$ if $x\geq \beta$? If so, can we make $f$ smooth?
With $u<v:$ Let $f(x)=0$ for $x\leq u.$ Let $f(x)=1$ for $x\geq v.$
Let $ n\in \Bbb Z^+.$
Let $g(y)=(y-u)^{n+1} (y-v)^{n+1}.$ Let $K=\int_u^v g(y)dy.$
For $u<x<v$ let $f(x)=\frac {1}{K}\int_u^x g(y)dy.$
The $n$th derivative of $f$ exists and is continuous at all points.
Note: $K\ne 0$ because either (i) $g(y)>0$ for all $y\in (u,v)$ or (ii) $g(y)<0$ for all $y\in (u,v).$