Recall this theorem:
Let $I = [a,b]$ and $f_n : I \to \mathbb{R}$ a sequence of differentiable functions such that the sequence of derivatives $(f_n')_n$ converges uniformly to a function $g : I \to \mathbb{R}$. Also $\exists x_0 \in I$ such that the sequence $(f_n(x_0))_n$ converges. Then $(f_n)_n$ converges uniformly to a differentiable function $f : I \to \mathbb{R}$ with $f' = g$.
So if $(f_n)_n$ is a sequence of functions in $C^1[a,b]$ such that $f_n \to f$ uniformly in $C[a,b]$ and $f_n' \to g$ uniformly in $C[a,b]$ then the previous theorem gives that $f$ is differentiable and $f' = g$. Since $g$ is a uniform limit of continuous functions, it is continuous so $f' \in C[a,b]$ and therefore $f \in C^1[a,b]$.
Therefore the graph $\{(f,f') : f \in C^1[a,b]\}$ is closed so $\frac{d}{dx}$ is closed on $C^1[a,b]$.
To show that $\frac{d}{dx}$ is not closed on $C^\infty[-1,1]$, consider $f_n \in C^\infty[-1,1]$ given by
$$f_n(x) = \frac12x\sqrt{x^2+\frac1n} + \frac1{2n}\ln\left(x + \sqrt{x^2+\frac1n}\right)$$
We have $f_n \to \frac12 x|x|$ uniformly. To see this, note that $x\mapsto x+\sqrt{x^2+\frac1n}$ is increasing and $x\mapsto\left|\ln x\right|$ increases when $x \ge 1$ and decreases when $x \le 1$.
Therefore
$$\left|\ln\left(x+\sqrt{x^2+\frac1n}\right)\right| \le \max\left\{-\ln\left(-1+\sqrt{1+\frac1n}\right), \ln\left(1+\sqrt{1+\frac1n}\right)\right\} \le \max\left\{-\ln\left(-1+\sqrt{1+\frac1n}\right), \ln\left(1+\sqrt2\right)\right\} \le -\ln\left(-1+\sqrt{1+\frac1n}\right)$$
for large enough $n$ and
$$\left|\sqrt{x^2+\frac1n} - |x|\right| = \sqrt{x^2+\frac1n} - \sqrt{x^2} = \frac{\frac1n}{\sqrt{x^2+\frac1n} + \sqrt{x^2}} \le \frac{\frac1n}{\frac1{\sqrt{n}}} = \frac1{\sqrt{n}}$$
so
\begin{align}
\left|f_n(x) - \frac12x|x|\right| &= \left|\frac12x\sqrt{x^2+\frac1n} + \frac1{2n}\ln\left(x + \sqrt{x^2+\frac1n}\right) - \frac12 x|x|\right| \\
&\le \frac{|x|}2\left|\sqrt{x^2+\frac1n} - |x|\right| + \frac1{2n}\left|\ln\left(x + \sqrt{x^2+\frac1n}\right)\right|\\
&\le \frac1{\sqrt{n}} - \frac1{2n}\ln\left(-1+\sqrt{1+\frac1n}\right)\\
&\xrightarrow{n\to\infty} 0
\end{align}
uniformly in $x \in [-1,1]$.
On the other hand, $f_n'(x) = \sqrt{x^2+\frac1n}$ and the above computation also shows that $f_n' \to |\cdot|$ uniformly, and $|x| = \frac{d}{dx}\left(\frac12 x|x|\right)$.
Hence $f_n \to \frac12 x|x|$ uniformly and $f_n' \to \frac{d}{dx}\left(\frac12 x|x|\right)$ uniformly, but $\frac12 x|x|$ is not a smooth function.
We conclude that $\frac{d}{dx}$ is not closed on $C^\infty[-1,1]$.