$f$ is continuous on $[0,\infty)$ and differentiable on $(0,\infty)$ and $f(0) \geq 0$ and $f^\prime(x) \geq f(x)$ to show $f(x)\geq 0 \forall x \in (0,\infty)$
my answer: if $\exists x_0 \in (0,\infty)$ s.t. $f(x_0)<0$ then $\frac{f(x_0)-f(0)}{x_0} = f^\prime(a_1) \leq 0$ now $a_1 \in (0,x_0) $
$\frac{f(a_1)-f(0)}{a_1}=f^\prime(a_2) \leq 0$
continuing this way we get a sequence $(a_i) \rightarrow 0$ s.t.$f^\prime(a_i)\leq 0 \leq f(a_i)$ which is a contradiction
is this correct or not?