For positive $a_1,a_2,a_3......,a_p $
Find $\lim_{n\rightarrow \infty} {\sqrt[n] \frac{a_1^n +a_2^n +........+a_p^n}{p}}$
My attempts :${\sqrt[n] \frac{a_1^n +a_2^n +........+a_p^n}{p}}$= ${ \sqrt[n] {a_1^n +a_2^n +........+a_p^n}}. (\frac{1}{\sqrt[n]{p}} )$
$\sqrt[n]{a_1^n+\cdots+a_p^n}\leq \sqrt[n]{a_p^n+\cdots+a_{p}^n}=\sqrt[n]{na_p^n}=\sqrt[n]{n} \cdot a_p$
so ${\sqrt[n] \frac{a_1^n +a_2^n +........+a_p^n}{p}}$= ${ \sqrt[n] {a_1^n +a_2^n +........+a_p^n}}. (\frac{1}{\sqrt[n]{p}} )\le \frac {\sqrt[n]{n} \cdot a_p} (\frac{1}{\sqrt[n]{p}} $
after that I'm not able to proceed further .....
Pliz help me
thanks in advance .....