How do I prove:
$$ \bigcap_{i \in \varnothing} A_i= \Omega $$
Also, another logical explanation will be great.
How do I prove:
$$ \bigcap_{i \in \varnothing} A_i= \Omega $$
Also, another logical explanation will be great.
It ensures that
$$\left ( \bigcap_{i \in I} A_i \right ) \cap \left ( \bigcap_{j \in J} A_j \right ) = \bigcap_{i \in I \cup J} A_i$$
for arbitrary families $A_i$ and index sets $I,J$.
It can also be regarded as a special case of the fact that "$\forall x \in \emptyset \: P(x)$" is true for any predicate $P$: for any $y$, "$\forall i \in \emptyset \: y \in A_i$" is true.
In other words, is it true that if $i \in \emptyset$ then $x \in A_i$?
Yes, this is vacuously true.
– littleO Jul 08 '18 at 14:13