Note that $$ I(x) = \int_{-\pi}^{\pi} e^{x \cos \phi}\, d\phi = e^x \cdot \int_{-\pi}^{\pi} e^{-2x \sin^2 \left(\frac{\phi}{2}\right)}\, d\phi.$$
As a result, we have the estimation
$$
e^x \cdot \int_{-\pi}^{\pi} e^{-2x \sin^2 \left(\frac{\phi}{2}\right)}\cdot \cos\left(\frac{\phi}{2}\right)\,
d\phi \leq I(x) \leq e^x \cdot \int_{-\pi}^{\pi} e^{-2x \left(\frac{\phi}{\pi}\right)^2 }\,
d\phi,
$$
which can be reduced to
$$ \frac{2e^x}{\sqrt{x}}\cdot \int_{-\pi\sqrt{x}}^{\pi\sqrt{x}}e^{-2t^2}\,dt \leq I(x) \leq \frac{\pi e^x}{\sqrt{x}}\cdot \int_{-\sqrt{x}}^{\sqrt{x}}e^{-2t^2}\,dt .$$
Thus we have
$$ \sqrt{2\pi}\left(1 - 2e^{-2\pi^2 x}\right) \cdot \frac{e^x}{\sqrt{x}} \leq I(x) \leq \sqrt{\frac{\pi^3}{2}} \frac{e^x}{\sqrt{x}},$$
where the first inequality follows from the Chernoff bound.
When $x \gg 1$, we have $\displaystyle I(x) = \Theta\left(\frac{e^x}{\sqrt{x}}\right)$.
Remark:
Laplace's method will give
$$\lim_{x\to +\infty} \frac{I(x)}{\sqrt{2\pi} e^x\cdot x^{-1/2}} = 1.$$