With $\sum\limits_{i= 1}^{3}x_{i}= 3,\,\,x_{i}\geq 0$, prove that:
$$\sum\limits_{cyc} \frac{1- x_{1}}{5\,{x_{1}}^{4}- 9\,{x_{1}}^{2}- 450}\geq 0$$
Case $x_{i}\geq \frac{2}{\sqrt{5}}$, we have:
$$\sum \left [ \frac{1- x}{5\,x^{4}- 9\,x^{2}- 450}- \frac{1}{454}\left ( x- 1 \right ) \right ]= \sum \frac{\left ( x- 1 \right )^{2}\left ( x+ 1 \right )\left ( 5\,x^{2}- 4 \right )}{- 454\left ( 5\,x^{4}- 9\,x^{2}- 450 \right )}\geq 0$$
Case $0\leq x_{1},\,x_{2}\leq \frac{2}{\sqrt{5}},\,x_{3}\geq 3- \frac{4}{\sqrt{5}}$, I tried to find $k$ such that:
$$\frac{1- x}{5\,x^{4}- 9\,x^{2}- 450}- k\left ( x- 1 \right )\geq 0 \,\,\forall x \in \left [ 0,\,\frac{2}{\sqrt{5}} \right ] \cup \left [ 3- \frac{4}{\sqrt{5}},\,3 \right ]$$
by the way like the post were here: https://diendantoanhoc.net/topic/183270-cmr-sum-frac1a2-geq-sum-a2/#entry711655
But without success! Please help me to find $k$ and solve another cases!