Proposition: Let $a>0$ be a positive real number. Then the function $f:\Bbb{R}\rightarrow\Bbb{R}$ defined $f(x):=a^x$ is continuous. So far what I got seems really far-off from what I think the text is asking.
Proof Attempt: We want to show that $\forall\epsilon>0\exists\delta>0$ such that if $\vert x-x_0 \vert<\delta$, then $\vert a^x-a^{x_0}\vert<\epsilon$. Computing for $\delta$ \begin{align} \vert a^x-a^{x_0}\vert<\epsilon &\Longleftrightarrow a^{x_0}-\epsilon<a^x<a^{x_0}+\epsilon\\ &\Longleftrightarrow \log_a(a^{x_0}-\epsilon)<\log_a(a^x)<\log_a(a^{x_0}+\epsilon)\\ &\Longleftrightarrow \log_a(a^{x_0}-\epsilon)<x<\log_a(a^{x_0}+\epsilon)\\ \end{align} Hence, let $\delta=\min(\log_a(a^{x_0}-\epsilon), \log_a(a^{x_0}+\epsilon))$. QED.
Is this correct? Since I am working through Tao's Analysis text he discourages the reader from using logarithms since logarithms wasn't defined on the text. Instead, he hinted that we use the following propositions(I want to know how to use these propositions):
Lemma 6.5.3. For any $x>0$, we have $lim_{n\rightarrow\infty}x^{1/n}=1$.
Corollary 6.4.14. Let $(a_n)_{n=m}^{\infty}$, $(b_n)_{n=m}^{\infty}$, and $(c_n)_{n=m}^{\infty}$ be sequences of real numbers such that $a_n\leq b_n\leq c_n$ for all $n\geq m$. Suppose also that $(a_n)_{n=0}^{\infty}$ and $(c_n)_{n=0}^{\infty}$ converges to $L$. Then $(b_n)_{n=0}^{\infty}$ is also convergent to $L$.
