Finally it solved ^_^ :
first by use: $\sin^2x=\frac{1-\cos 2x}{2}$
$$\left(1-\frac{\sin^2(x)}{\sin^2\frac{k\pi}{2n}}\right)=\left(\frac{\cos 2x - \cos{\frac{k\pi}{n}}}{2\sin^2\frac{k\pi}{2n}}\right)$$
then by use :$\cos x - \cos y $ formula
I got
$$\left(1-\frac{\sin^2(x)}{\sin^2\frac{k\pi}{2n}}\right)=-\left(\frac{\sin(x+\frac{k\pi}{2n})\sin(x-\frac{k\pi}{2n})}{\sin^2\frac{k\pi}{2n}}\right)$$
so
$$R.H.S=2n\sin x \cos x \prod_{k=1}^{n-1}\left(-\frac{\sin(x+\frac{k\pi}{2n})\sin(x-\frac{k\pi}{2n})}{\sin^2\frac{k\pi}{2n}}\right)$$
but
$$\prod_{k=1}^{n-1}\sin(\frac{k\pi}{2n}-x)= \prod_{k=1}^{n-1}\cos(x+\frac{k\pi}{2n})$$
so
$$R.H.S=2n\sin x \cos x \prod_{k=1}^{n-1}\left(\frac{\sin(2x+\frac{k\pi}{n})}{2\sin^2\frac{k\pi}{2n}}\right)$$
and by This LINK i've got
$$\frac{\sin(2nx)}{2\sin x \cos x 2^{n-1}}=\prod_{k=1}^{n-1}\sin(2x+\frac{k\pi}{n})$$
so
$$R.H.S=\frac{n\sin(2nx)}{2^{2n-2}}\prod_{k=1}^{n-1}\left(\frac{1}{\sin^2\frac{k\pi}{2n}}\right)$$
and Finally from this
$$R.H.S=\frac{n\sin(2nx)}{2^{2n-2}}\left(\frac{1}{n2^{2-2n}}\right)=\sin(2nx)=L.H.S$$