Q: Prove that for arbitrary $x_1,x_2,...,x_n$:
$$\frac{x_1}{1+x_1^2}+\frac{x_2}{1+x_1^2+x_2^2}+...+\frac{x_n}{1+x_1^2+x_2^2+...+x_n^2}\lt\sqrt{n}$$
I tried using mathematical induction. The case for $n=1$ is obvious. Assume it is true for $n=k$. So for $n=k+1$:
$$\frac{x_1}{1+x_1^2}+\frac{x_2}{1+x_1^2+x_2^2}+...+\frac{x_n}{1+x_1^2+x_2^2+...+x_n^2}+\frac{x_{n+1}}{1+x_1^2+x_2^2+...+x_{n+1}^2}\lt\sqrt{n+1}$$
$$\sqrt{n}+\frac{x_{n+1}}{1+x_1^2+x_2^2+...+x_{n+1}^2}\lt\sqrt{n+1}$$ by the induction hypothesis
$$\frac{x_{n+1}}{1+x_1^2+x_2^2+...+x_{n+1}^2}\lt\sqrt{n+1}-\sqrt{n}$$
$$(\sqrt{n+1}+\sqrt{n})x_{n+1}\gt{1+x_1^2+x_2^2+...+x_{n+1}^2}$$
How do I proceed from here? Am I even on the right track?