Given the very simple integral
\begin{equation} \int -\frac{1}{2x} dx \end{equation}
The obvious solution is
\begin{equation} \int -\frac{1}{2x} dx = -\frac{1}{2} \int \frac{1}{x} dx = -\frac{1}{2} \ln{|x|} + C \end{equation}
However, by the following integration rule \begin{equation} \int \frac{1}{ax + b} dx = \frac{1}{a} \ln{|ax + b|} + C \end{equation}
the following solution is obtained \begin{equation} \int -\frac{1}{2x} dx = -\frac{1}{2}\ln{|-2x|} + C \end{equation}
Why are these solutions different? Which is correct?
The second solution can be simplified \begin{equation} -\frac{1}{2}\ln{|-2x|} + C = -\frac{1}{2}\ln{|-2|} -\frac{1}{2}\ln{|x|} + C= -\ln{\frac{1}{\sqrt{2}}} - \frac{1}{2}\ln{|x|} + C \end{equation} but they still differ.