Analyze if the serie is convergent or divergent:
$$\sum_{n=1}^{\infty}\frac{\ln n }{1+n^2}.$$
How do I analyze this?
Is posible comparation? with that series?
Analyze if the serie is convergent or divergent:
$$\sum_{n=1}^{\infty}\frac{\ln n }{1+n^2}.$$
How do I analyze this?
Is posible comparation? with that series?
HINT
Let consider the convergent
$$\sum_{n=1}^{\infty}\frac{1 }{n^{3/2}}$$
and note that
$$\frac{\frac{\ln n }{1+n^2}}{\frac{1 }{n^{3/2}}}\to 0$$
then refer to limit comparison test.
Make use of the following:
\begin{align} \sum_{n=1}^{\infty} \frac{\log n}{1+n^2}<\sum_{n=1}^{\infty} \frac{\log n}{n^2}=-\zeta'(2)=0.9375... \end{align}
Consider that $$a_{n}=\frac{ln(n)}{1+n^2}$$, and , $$a_{n+1}=\frac{ln(n+1)}{1+(n+1)^2}$$.
If the limit $$\lim_{n\to\infty}{\frac{a_{n+1}}{a_{n}}}=0$$ , the serie indeed converge . We can further observe that :
$$\lim_{n\to\infty}{\frac{a_{n+1}}{a_{n}}}=\lim_{n\to\infty}\frac{\frac{ln(n+1)}{1+(n+1)^2}}{\frac{ln(n)}{1+n^2}} \rightarrow 1 \neq0$$ , and hence is divergent.
Hint:
Computing the limit is trivial and left to the reader.