Let $0<\alpha<\beta\le1$ and $-\infty<a<b<\infty$ then $C^{0,\beta}([a,b])\subsetneq C^{0,\alpha}([a,b])$
Proof:
First define $\|f\|_{C^{0,\alpha}}:=\|f\|_{C^0([a,b])}+[f]_{C^{0,\alpha}([a,b])}$ where $[f]_{C^{0,\alpha}([a,b])}:=\sup\limits_{a\le x\ne y\le b}\frac{|f(x)-f(y)|}{|x-y|^{\alpha}}$
$\sup\limits_{a\le x\ne y\le b}\frac{|f(x)-f(y)|}{|x-y|^{\alpha}}\le^{\text{why not equality?}} \sup\limits_{a\le x\ne y\le b}\frac{|f(x)-f(y)|\cdot |x-y|^{\beta - \alpha}}{|x-y|^{\beta}}\le [f]_{C^{0,\beta}([a,b])}(b-a)^{\beta-\alpha}$
$\|f\|_{C^{0,\alpha}}\le \|f\|_{C^0}+[f]_{C^{0,\beta}}(b-a)^{\beta-\alpha}\le (1+(b-a)^{\beta-\alpha})\|f\|_{C^{0,\beta}}$
How to prove it is a strict inclusion? I am having a hard time visualizing what kind of function satisfies the Holder condition.