Question
From the equation who's roots are $\cos\frac{\pi}9,\cos\frac{3\pi}9,\cos\frac{5\pi}9,\cos\frac{7\pi}9$ and hence prove
a) $8\cos\frac{\pi}9\cos\frac{5\pi}9\cos\frac{7\pi}9=1=8\cos\frac{\pi}9\cos\frac{2\pi}9\cos\frac{4\pi}9$
b) $\sec^4\frac{\pi}9+\sec^4\frac{2\pi}9+\sec^4\frac{4\pi}9=1104$
My Attempt:
Say $y=e^{i\pi(2k+1)/9}$
Thus $y^9+1=0$ has solutions $e^{i\pi(2k+1)/9}$ for $k\in\{0,1,\dots,8\}$
Let $y+1/y=2x\implies y=x\pm\sqrt{x^2-1}$
Thus $(x\pm\sqrt{x^2-1})^9+1=0$ has solutions $\cos\frac{(2k+1)\pi}{9}$ for $k\in\{0,1\dots8\}$
Thus $(x\pm\sqrt{x^2-1})^9+1=\prod_{k=0}^8(x-\cos\frac{(2k+1)\pi}{9})$
But if we put $x=0$, LHS is complex while RHS is Real
What am i doing wrong?