Let
- $(\Omega,\mathcal A,\operatorname P)$ be a probability space
- $(\mathcal F_t)_{t\ge0}$ be a filtration on $(\Omega,\mathcal A)$
- $M_{c,\:\text{loc}}(\mathcal F,\operatorname P)$ denote the set of continuous local $\mathcal F$-martingales on $(\Omega,\mathcal A,\operatorname P)$
Is $M_{c,\:\text{loc}}(\mathcal F,\operatorname P)$ equipped with the topology of uniform convergence on compact sets$^1$ complete?
$^1$ i.e. If $(M^n)_{n\in\mathbb N}\subseteq M_{c,\:\text{loc}}(\mathcal F,\operatorname P)$ and $M\in M_{c,\:\text{loc}}(\mathcal F,\operatorname P)$, then $M_n\xrightarrow{n\to\infty}M$ in $M_{c,\:\text{loc}}(\mathcal F,\operatorname P)$ if and only if $$\sup_{0\le s\le t}\left|M^n_s-M_s\right|\xrightarrow{n\to\infty}0\;\;\;\text{in probability for all }t\ge 0\tag1.$$