If $[$.$]$ denotes the greatest integer function, then find the value of $\lim_{n \to \infty} \frac{[x] + [2x] + [3x] + … + [nx]}{n^2}$
What I did was, I wrote each greatest integer function $[x]$ as $x - \{x\}$, where $\{.\}$ is the fractional part. Hence, you get
$\lim_{n \to \infty} \frac{\frac{n(n+1)}{2}(x-\{x\})}{n^2}$
The limit should then evaluate to $\frac{x-\{x\}}{2}$
But the answer given is $\frac{x}{2}$. What am I missing here?