The relationship between Mersenne primes $2^r-1$ and even perfect numbers $2^{r-1}(2^r-1)$ is well-known (Euclid, Euler).
In a video on the web I heard the statement that it is known that a Mersenne prime cannot divide an odd perfect number (quote: We do know, if we find an odd perfect number, it is not going to have a Mersenne prime as a factor). Is that true? Does anyone have a reference or a proof?
We know odd perfect numbers are of the form $$p^\alpha Q^2$$ where $p$ is a prime and $p\equiv\alpha\equiv 1 \pmod 4$ and $p\nmid Q$ (Euler). Clearly the special prime $p$ cannot be a Mersenne prime (Mersennes are $3\pmod 4$), so my question is if $Q$ (which is known to be composite of course) could contain a Mersenne prime factor.