5

I am having some trouble proving following identity without use of induction, with which it is trivial.

$$\sum_{n=1}^{m}\frac{1}{n(n+1)(n+2)}=\frac{1}{4}-\frac{1}{2(m+1)(m+2)}$$

I did expand the expression: $$\sum_{n=1}^{m}\left( \frac{1}{2n}-\frac{1}{n+1}+\frac{1}{2(n+2)} \right)$$

I have no idea how to proceed further.

4 Answers4

10

HINT:

$$\begin{align*} \sum_{n=1}^m\left(\frac1{2n}-\frac1{n+1}+\frac1{2(n+2)}\right)&=\frac12\sum_{n=1}^m\left(\left(\frac1n-\frac1{n+1}\right)-\left(\frac1{n+1}-\frac1{n+2}\right)\right)\\\\ &=\frac12\left(\sum_{n=1}^m\left(\frac1n-\frac1{n+1}\right)-\sum_{n=1}^m\left(\frac1{n+1}-\frac1{n+2}\right)\right)\\\\ &=\frac12\left(\sum_{n=1}^m\left(\frac1n-\frac1{n+1}\right)-\sum_{n=2}^{m+1}\left(\frac1n-\frac1{n+1}\right)\right) \end{align*}$$

Brian M. Scott
  • 631,399
10

A straightforward way. Write the sum as

$$\sum_{n=1}^{m}\left(\frac{1}{2n(n+1)}-\frac{1}{2(n+1)(n+2)}\right)=\frac{1}{4}-\frac{1}{2(m+1)(m+2)}$$ Q.E.D. (the sum telescopes)

user 1591719
  • 44,987
6

This is a special case $(k=3)$ of the following $$ \begin{align} \sum_{n=k}^m\frac1{\binom{n}{k}} &=\frac{k}{k-1}\sum_{n=k}^m\left(\frac1{\binom{n-1}{k-1}}-\frac1{\binom{n\vphantom{1}}{k-1}}\right)\\ &=\frac{k}{k-1}\left(1-\frac1{\binom{m}{k-1}}\right) \end{align} $$ Noting that $n(n+1)(n+2)\dots(n+k-1)=k!\binom{n+k-1}{k}$ yields $$ \sum_{n=1}^m\frac1{k!\binom{n+k-1}{k}}=\frac1{k-1}\left(\frac1{(k-1)!}-\frac1{(k-1)!\binom{(m+1)+(k-2)}{k-1}}\right) $$ that is, $$ \sum_{n=1}^m\underbrace{\frac1{n(n+1)\dots(n+k-1)}}_{k\text{ factors}}=\frac1{k-1}\left(\frac1{(k-1)!}-\underbrace{\frac1{(m+1)(m+2)\dots(m+k-1)}}_{k-1\text{ factors}}\right) $$ Substituting $k=3$ gives $$ \sum_{n=1}^m\frac1{n(n+1)(n+2)}=\frac12\left(\frac12-\frac1{(m+1)(m+2)}\right) $$

robjohn
  • 353,833
1

Hint: by partial fraction

$$\frac{1}{n(n+1)(n+2)}=\frac{A}{n}+\frac{B}{n+1}+\frac{C}{n+2}\Longrightarrow$$

$$1=A(n+1)(n+2)+Bn(n+2)+Cn(n+1)$$

Choosing smartly values for $\,n\,$ above , we get

$$1=2A\Longrightarrow A=\frac{1}{2}\;\;,\;\;1=-B\Longrightarrow B=-1\;\;,\;\;1=2C\Longrightarrow C=\frac{1}{2}$$

so

$$\frac{1}{n(n+1)(n+2)}=\frac{1}{2}\left(\frac{1}{n}-\frac{2}{n+1}+\frac{1}{n+2}\right)$$

So summing up

$$\sum_{n=1}^m\frac{1}{n(n+1)(n+2)}=\frac{1}{2}\sum_{n=1}^m\left(\frac{1}{n}-\frac{2}{n+1}+\frac{1}{n+2}\right)=$$

$$=\frac{1}{2}\left[\sum_{n=1}^m\left(\frac{1}{n}-\frac{1}{n+1}\right)-\left(\frac{1}{n+1}-\frac{1}{n+2}\right)\right]$$

Now just check that there's a lot of cancellation up there...

DonAntonio
  • 214,715
  • I don't get it: what is "totally redundant"? – DonAntonio Jan 15 '13 at 23:26
  • The partial fraction computation was not necessary. It's already done in question so not needed and Brian M. Scott already had the remaining portion. Never mind!. It is self contained and good. Thank You. –  Jan 15 '13 at 23:29
  • 1
    You realize that nobody here can't look what other people do while writing an answer, so it may happen with very basic questions that there are two or more answers that appeared within a few minutes from each other and very similar...you're not a newbie in this site, you should know this. – DonAntonio Jan 16 '13 at 02:54