You can avoid the restrictions making
$$
u = 4\left(\frac{\sin(\phi)+1}{2}\right)\\
v = 2\left(\frac{\sin(\eta)+1}{2}\right)
$$
with this change of variables the problem reads
$$
\min\max f(\phi,\eta) = 2u^4-uv^2+2v^2 = 2u^4-(u-2)v^2
$$
The stationary conditions give
$$
\nabla f = (f_{\phi},f_{\eta}) =
\left\{
\begin{array}{rcl}
128 (\sin (\phi )+1)^3 \cos (\phi )-2 (\sin (\eta )+1)^4 \cos (\phi )&=&0\\
-8 (\sin (\eta )+1)^3 \cos (\eta ) (\sin (\phi )+1)-4 (\sin (\eta
)+1) \cos (\eta )& = & 0
\end{array}\right.
$$
or
$$
\left\{
\begin{array}{rcl}
\cos(\phi) & = & 0\\
\sin(\eta) & = & 0\\
64 (\sin (\phi )+1)^3-(\sin (\eta )+1)^4&=&0\\
2 (\sin (\eta )+1)^2 (\sin (\phi )+1)+1& = & 0
\end{array}\right.
$$
Calling
$$
p = \sin(\phi)+1\\
q=\sin(\eta)+1
$$
the system last two equations read
$$
64p^3-q=0\\
2p q^2+1=0
$$
and thus the values for $\phi, \eta$ are easily obtained