Yesterday I saw the definition of Dolbeaut cohomology: let $(M,J)$ be a complex manifold, write the exterior derivative as ${\rm d} = \partial +\overline{\partial}$, where $\partial: \Omega^{\ell,m}(M) \to \Omega^{\ell+1,m}(M)$ and $\overline{\partial}: \Omega^{\ell,m}(M) \to \Omega^{\ell,m+1}(M)$, look at the complex $$\cdots \xrightarrow{\hspace{.4cm}\overline{\partial}\hspace{.4cm}} \Omega^{\ell,m-1}(M)\xrightarrow{\hspace{.4cm}\overline{\partial}\hspace{.4cm}} \Omega^{\ell,m}(M) \xrightarrow{\hspace{.4cm}\overline{\partial}\hspace{.4cm}} \Omega^{\ell,m+1}(M)\xrightarrow{\hspace{.4cm}\overline{\partial}\hspace{.4cm}} \cdots$$and put $$H^{\ell,m}_{\rm Dolbeaut}(M) \doteq \frac{\ker(\overline{\partial}: \Omega^{\ell,m}(M) \to \Omega^{\ell,m+1}(M))}{{\rm Im}(\overline{\partial}: \Omega^{\ell,m-1}(M) \to \Omega^{\ell,m}(M))}.$$Great.
Question: Why did we took the above complex instead of $$\cdots \xrightarrow{\hspace{.4cm}\partial\hspace{.4cm}} \Omega^{\ell-1,m}(M)\xrightarrow{\hspace{.4cm}\partial\hspace{.4cm}} \Omega^{\ell,m}(M) \xrightarrow{\hspace{.4cm}\partial\hspace{.4cm}} \Omega^{\ell+1,m}(M)\xrightarrow{\hspace{.4cm}\partial\hspace{.4cm}} \cdots?$$
I get that $f: M \to \Bbb C$ is $J$-holomorphic if and only if $\overline{\partial}f = 0$ so that $\overline{\partial}$ sort of measures how stuff in general would be away from being holomorphic. But I'd like a more solid explanation.