Let $d \in \mathbb{N}$, $A \subset \mathbb{R}^d$, be a Borel set. Consider Minkowski sums $$ \mathbb{S}(A) = A + A = \{x + y:\; x,y\in A \} $$ $$ \mathbb{D}(A) = A - A = \{x - y:\; x,y\in A\} $$ Must the sets $\mathbb{S}(A)$ and $\mathbb{D}(A)$ be Borel when $A$ is a Borel set?
I know that it fails when we consider sum of two different sets $A+B$ (see this paper for details).