Let $p(z)$ be a monic polynomial of degree $n$.
Prove that $\max\limits_{|z|=1}|p(z)|\geq 1$ and that equlity holds if and only if $p(z)=z^n$.
I first observed that $p^{(n)}(z)=n!$. Therefore by Cauchy's formula
$$n!=p^{(n)}(0)=\frac{n!}{2\pi i}\int\limits_{|z|=1}\frac{p(z)}{(z-0)^{n+1}}dz\implies 1\leq\frac{1}{2\pi}\int\limits_{|z|=1}|p(z)|dz\leq\max\limits_{|z|=1}|p(z)|$$
Now, clearly if $p(z)=z^n$ then $\max\limits_{|z|=1}|p(z)|= 1$, but what about the converse?