$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\pars{n + 1}! & = {\pars{n + 1}! \over \pars{n + 1}^{n + 1}}
\,\color{blue}{\pars{n + 1}^{n + 1}} =
\color{blue}{\pars{n + 1}^{n + 1}}\,{n! \over \pars{n + 1}^{n}} =
\color{blue}{\pars{n + 1}^{n + 1}}\,{n\pars{n - 1}\cdots 2 \times 1 \over n^{n}\pars{1 + 1/n}^{n}}
\\[5mm] & =
\color{blue}{\pars{n + 1}^{n + 1}}\,\ \overbrace{\underbrace{{\pars{1 - 1/n}\pars{1 - 2/n}\cdots
\bracks{1 - \pars{n - 2}/n}\bracks{1 - \pars{n - 1}/n} \over \pars{1 + 1/n}^{n}}}_{\ds{{\mbox{numerator}\ < 1} \atop {\mbox{denominator} > 1}}}}^{\ds{\Large\color{red}{< 1}}}
\\[5mm] & <
\bbx{\large \pars{n + 1}^{n + 1}}
\end{align}