My Attempt:- Let $z_1=z_0,z_2=\overline{z_0},z_3=0$ and $w_1=0,w_2=\infty, w_3=\frac{z_0}{\overline{z_0}}$. Applying this in Result in the box, we get $$\frac{w.(1-\frac{w_3}{w_2})}{(w-\frac{z_0}{\overline{z_0}})(1-\frac{w_3}{w_2})}=\frac{(z-z_0).\overline{z_0}}{z.(\overline{z_0}-z_{0})}.$$ Simplication, $$\frac{w.\overline{z_0}}{(\overline{z_0}w-{z_0)}{}}=\frac{(z-z_0).\overline{z_0}}{z.(\overline{z_0}-z_{0})}$$ $\implies$ $$\frac{w}{(\overline{z_0}w-{z_0)}{}}=\frac{(z-z_0)}{z.(\overline{z_0}-z_{0})}$$ I am not able to simplify and get the answer in the picture.
Reference:- Complex Variables with Applications, Ponnusamy S. and Silverman H.
Please help me.
