Find $\displaystyle \int^{\pi}_{0}x^2\ln(\sin x)\mathrm dx$.
My attempt:
I try
Assume $\displaystyle I =\int^{\pi}_{0}x^2\ln(\sin x)\mathrm dx=\int^{\pi}_{0}x^2\ln\left(2\sin\frac{x}2\cos \frac{x}2\right)\mathrm dx$
$\implies\displaystyle I=\int^{\pi}_{0}x^2\ln(\sin \frac{x}{2})\mathrm dx+\int^{\pi}_{0}x^2\ln(\cos \frac{x}{2})\mathrm dx+\int^{\pi}_{0}x^2\ln(2)\mathrm dx$
$\implies\displaystyle I=8\int^{\frac{\pi}{2}}_{0}t^2\ln\sin(t)\mathrm dt+8\int^{\frac{\pi}{2}}_{0}t^2\ln\cos(t)\mathrm dt+2\int^{\frac{\pi}{2}}_{0}\ln(2)\mathrm dt$
I do not understand how can I solve it.