$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{\int{\dd x \over x\pars{3 + x^{2}}\root{1 -x^{2}}} =
{1 \over 3}\int{\dd x \over x\root{1 - x^{2}}} -
{1 \over 3}\int{x \over \pars{3 + x^{2}}\root{1 - x^{2}}}\,\dd x:\ {\large ?}}$
\begin{align}
{1 \over 3}\int{\dd x \over x\root{1 - x^{2}}} &
\,\,\,\stackrel{x\ =\ 1/t}{=}\,\,\,
-\,{1 \over 3}\int{\dd t \over \root{t^{2} - 1}}
\,\,\,\stackrel{t\ =\ \sec\pars{\theta}}{=}\,\,\,
-\,{1 \over 3}\int\sec\pars{\theta}\,\dd \theta
\\[5mm] & =
-\,{1 \over 3}\,\ln\pars{\verts{\sec\pars{\theta} + \tan\pars{\theta}}} =
-\,{1 \over 3}\,\ln\pars{\verts{t + \root{t^{2} - 1}}}
\\[5mm] & =
{1 \over 3}\ln\pars{\verts{x \over 1 + \root{1 - x^{2}}}}
\\[5mm] & =
{1 \over 6}\bracks{\ln\pars{\verts{x \over 1 + \root{1 - x^{2}}}} +
\ln\pars{\verts{1 - \root{1 - x^{2}} \over x}}}
\\[5mm] & =
{1 \over 6}\,\ln\pars{\verts{1 - \root{1 - x^{2}} \over
1 + \root{1 - x^{2}}}}
\end{align}
\begin{align}
{1 \over 3}\int{x \over \pars{3 + x^{2}}\root{1 - x^{2}}}\,\dd x &
\,\,\,\stackrel{x\ =\ \root{1 - t^{2}}}{=}\,\,\,
{1 \over 3}\int{\dd t \over t^{2} - 4} =
{1 \over 12}\int\pars{{1 \over t - 2} - {1 \over t + 2}}\,\dd t
\\[5mm] & =
{1 \over 12}\ln\pars{\verts{t - 2 \over t + 2}} =
\bbx{-\,{1 \over 12}\ln\pars{\verts{\root{1 - x^{2}} + 2 \over
\root{1 - x^{2}} - 2}}}
\end{align}
\begin{align}
&\int{\dd x \over x\pars{3 + x^{2}}\root{1 -x^{2}}}
\\[5mm] = &\
\bbx{%
{1 \over 6}\ln\pars{\verts{1 - \root{1 - x^{2}} \over 1 + \root{1 - x^{2}}}} +
{1 \over 12}\ln\pars{\verts{\root{1 - x^{2}} + 2 \over \root{1 - x^{2}} - 2}} + \mbox{a constant}}
\end{align}