In Lecture 13 of Harris's Algebraic Geometry, we have the Hilbert functions, $h_X$, for the following two cases:
- If $X=\{p_1,p_2,p_3\}\subseteq \mathbb{P}^2$ then there are two possible Hilbert functions:
$$h_X(m) = \begin{cases}2 & m=1\\ 3& m\geq 2\end{cases} \quad \text{and} \quad h_X(m)=3 \ \forall m\in \mathbb{N}$$ depending on whether the points are collinear or not, respectively [proof].
- If $X=\{p_1,p_2,p_3, p_4\}\subseteq \mathbb{P}^2$ then there are two possible Hilbert functions:
$$h_X(m) = \begin{cases}2 & m=1\\ 3& m= 2\\ 4 & m\geq 3\end{cases} \quad \text{and} \quad h_X(m)=\begin{cases}3 & m=1\\ 4& m \geq 2\end{cases}$$ depending on whether the points are collinear or not, respectively [proof].
Then it leaves the following generalization as an exercise:
Let $X\subseteq \mathbb{P}^n$ be a set of $d$ points. Show that for $m\geq d-1$, the Hilbert function $h_X(m)=d$.
I have no idea about how to approach. How can we generalize the specific arguments given in the proofs (like the case $m=2$)? To begin with, how to approach the following problem:
If $X=\{p\}\in\mathbb{P}^n$ be a point then $h_X(m)=1$ for all $m\in \mathbb{N}$.
Thank you for your time, please let me know if you have any hints/solution for this problem.