Assume $m\ \mathrm{and}\ n\ \mathrm{are\ two\ relative\ prime\ positive\ integers.}$
Given $x \equiv a\ \pmod m$ and $x \equiv a\ \pmod n$.
Prove that $x \equiv a\ \pmod {mn}\ \mathrm{by\ using\ Chinese\ Remainder\ Theorem}.$
And I did the following:
$$ \mathrm {M_1 = }\ n\ \ and\ \ \mathrm {M_2 = }\ m\ \\
\mathrm {y_1 = }\ n’\ \ and\ \ \mathrm {y_2 = }\ m’ \\
\mathrm{where}\ n\cdot n’\equiv 1\ \mathrm{(mod}\ m) \ \ and\ \ m\cdot m’\equiv1\ \mathrm{(mod}\ n) \\
Then\ x\equiv\ (a\cdot n\cdot n’\ +a\cdot m\cdot m’ )\pmod{mn} $$
But how could I conclude
“$x \equiv a\ (\mathrm {mod}\ mn)$” from the last statement or I did it wrongly? I would be grateful for your help :)