what is integer part of $$\sum_{j=2}^{100} \frac{1}{\sqrt{j}}= \frac{1}{\sqrt2}+\frac{1}{\sqrt3}+\frac{1}{\sqrt4}+\cdots+\frac{1}{\sqrt{100}}$$
I don’t have any idea how to approach this problem.
what is integer part of $$\sum_{j=2}^{100} \frac{1}{\sqrt{j}}= \frac{1}{\sqrt2}+\frac{1}{\sqrt3}+\frac{1}{\sqrt4}+\cdots+\frac{1}{\sqrt{100}}$$
I don’t have any idea how to approach this problem.
Hint. One may use, for $n\ge1$, $$ 2\sqrt{n+1}-2\sqrt{n}= \int_{n}^{n+1}\frac{dx}{\sqrt{x}} < \frac{1}{\sqrt{n}}<\int_{n-1}^{n}\frac{dx}{\sqrt{x}}=2\sqrt{n}-2\sqrt{n-1}. $$ Then one may write $$ \sum_{j=2}^{100} \frac{1}{\sqrt{j}}=\frac1{\sqrt{2}}+\sum_{j=3}^{100} \frac{1}{\sqrt{j}} $$ and conclude using the above inequality for $n=3$ to $n=100$.
Here is a way by bounding the sum by integrals:
$$S = \sum_{j=2}^{100} \frac{1}{\sqrt{j}}= \frac{1}{\sqrt2}+\frac{1}{\sqrt3}+\frac{1}{\sqrt4}+\cdots+\frac{1}{\sqrt{100}} = 10 \sum_{j=2}^{100} \frac{1}{\sqrt{\frac{j}{100}}}\frac{1}{100}$$ Now, you can bound the Riemann-sum on the right by two integrals:
$$10\int_{\frac{2}{100}}^{\frac{101}{100}}\frac{1}{\sqrt{x}}dx < S < 10\int_{\frac{1}{100}}^{1}\frac{1}{\sqrt{x}}dx$$ You get $$17 < 2(\sqrt{101}-\sqrt{2}) <S < 2(\sqrt{100}-1) = 18 \Rightarrow [S] = 17$$