We can find integral representations of this series. The most direct way would be to represent the logarithm as an integral:
$$\ln n=(n-1) \int_0^1 \frac{dt}{1+(n-1)t}$$
Interchanging integration and summation, we can write the series as:
$$\sum_{n= 2}^{\infty} \frac{(-1)^n\ln n}{n(n+1)}=\int_0^1 dt \sum_{n= 2}^{\infty} \frac{(-1)^n (n-1)}{n(n+1)(t n-t+1)}$$
The inner sum can be found in hypergeometric form the following way. First we shift the index:
$$\sum_{n= 2}^{\infty} \frac{(-1)^n (n-1)}{n(n+1)(t n-t+1)}=\sum_{n= 0}^{\infty} \frac{(-1)^n (n+1)}{(n+2)(n+3)(t n+t+1)}$$
Now we find the $0$th term and the ratio of successive terms:
$$c_0=\frac{1}{6(1+t)}$$
$$\frac{c_{n+1}}{c_n}=\frac{(n+2)(n+2)\left(n+\frac{1}{t}+1 \right)}{(n+4)\left(n+\frac{1}{t}+2 \right)} \frac{(-1)}{n+1}$$
Which makes the series equal to:
$$\sum_{n= 2}^{\infty} \frac{(-1)^n (n-1)}{n(n+1)(t n-t+1)}=\frac{1}{6(1+t)}~ {_3 F_2} \left(2,2,\frac{1}{t}+1;4,\frac{1}{t}+2;-1 \right)$$
This gives us an integral representation:
$$\sum_{n= 2}^{\infty} \frac{(-1)^n\ln n}{n(n+1)}= \frac{1}{6} \int_0^1 {_3 F_2} \left(2,2,\frac{1}{t}+1;4,\frac{1}{t}+2;-1 \right)\frac{dt}{1+t} \tag{1}$$
We can use Euler's integral transform to reduce the order of the hypergeometric function and obtain a double integral in terms of Gauss hypergeometric function ${_2 F_1} (2,2;4;-x)$, which in this case has elementary form. Then we integrate w.r.t. $t$ and obtain another integral representation:
$$\sum_{n= 2}^{\infty} \frac{(-1)^n\ln n}{n(n+1)}=\int_0^1 \Gamma(0,-\ln x) \left((2+x) \ln (1+x)-2x \right) \frac{dx}{x^3} \tag{2}$$
Where the incomplete Gamma function appears.
Using Simply Beautiful Art's result, we can also write:
$$\sum_{n= 2}^{\infty} \frac{(-1)^n\ln n}{n(n+1)}=\gamma \ln 2-\frac{\ln^2 2}{2} -\frac{1}{3} \int_0^1 {_3 F_2} \left(2,3,\frac{1}{t}+1;4,\frac{1}{t}+2;-1 \right)\frac{dt}{1+t} \tag{3}$$
The integral in $x$ will be a little more complicated than $(2)$.
sumalt(n=1, (-1)^n*log(n)/n/(n+1)) = 0.063253969010204084743376and I trust Pari more than Wolfram for this type of sums, see e.g. my question https://math.stackexchange.com/questions/476492/value-of-sum-n-0-infty-frac-1n-lnn2 – gammatester Apr 07 '18 at 22:23