I recently saw an olympiad style inequality that seemed very difficult. I tried to use elementary inequalities such as AM-GM or Cauchy-Schwarz, but neither have helped in making significant progress. Could anyone provide a rigorous proof, preferably using more elementary inequalities?
Problem: "Prove the inequality $\frac{1}{y(x+y)}+\frac{1}{z(y+z)}+\frac{1}{x(z+x)}\geq\frac{27}{2(x+y+z)^2}$ if $x,y,z$ are positive reals."