The problem is given by:
$$\begin{align*}
\arg \min_{x} \quad & {x}^{T} B x \\
\text{subject to} \quad & C x = d
\end{align*}$$
Where $ B $ is Positive Semi Definite (PSD) matrix.
Since $ B $ is PSD one could write the problem as:
$$\begin{align*}
\arg \min \quad & {\left\| A x - b \right\|}_{2}^{2} \\
\text{subject to} \quad & C x = d
\end{align*}$$
Where $ {A}^{T} A = B $ (Since it is PSD it is guaranteed such $ A $ exists) and $ b = \boldsymbol{0} $.
Now, this a simple Least Squares problem with Linear Equality Constraints.
The Lagrangian is given by:
$$ L \left( x, \nu \right) = \frac{1}{2} \left\| A x - b \right\|_{2}^{2} + {\nu}^{T} \left( C x - d \right) $$
From KKT Conditions the optimal values of $ \hat{x}, \hat{\nu} $ obeys:
$$ \begin{bmatrix}
{A}^{T} A & {C}^{T} \\
C & 0
\end{bmatrix} \begin{bmatrix}
\hat{x} \\
\hat{\nu}
\end{bmatrix} = \begin{bmatrix}
{A}^{T} b \\
d
\end{bmatrix} $$
Since $ B = {A}^{T} A $ and $ b = \boldsymbol{0} $ the above reduces to:
$$ \begin{bmatrix}
B & {C}^{T} \\
C & 0
\end{bmatrix} \begin{bmatrix}
\hat{x} \\
\hat{\nu}
\end{bmatrix} = \begin{bmatrix}
\boldsymbol{0} \\
d
\end{bmatrix} $$
Now all needed is to solve the above with any Linear System Solver.
If you want to use iterative procedure you may use Linear Least Squares with Linear Equality Constraints - Iterative Solver (With included MATLAB Code).