If all three expressions are considered as functions of $x \in \Bbb R$
(or $\Bbb C$, if you prefer):
$$
a(x) = 1+\frac{x^3}{3!}+\frac{x^6}{6!} + \ldots ,\\
b(x)=x+\frac{x^4}{4!}+\frac{x^7}{7!}+ \ldots ,\\
c(x)=\frac{x^2}{2!}+\frac{x^5}{5!}+\frac{x^8}{8!}+ \ldots
$$
then (as you noticed)
$$
b'(x) = a(x) \,, \\ c'(x) = b(x) \,, \\ a'(x) = c(x) \, .
$$
It follows that
$$
f(x) = a(x)^3+b(x)^3+c(x)^3−3a(x)b(x)c(x)
$$
satisfies
$$
f'(x) = 3a(x)^2c(x) + 3b(x)^2a(x)+ 3c(x)^2a(x)
- 3 \bigl( b(x)c(x)^2 + c(x)a^2(x) + a(x)b^2(x)\bigr) = 0 \, ,
$$
i.e. $f$ is constant. Setting $x=0$ shows
that $f(x) = 1$ for all $x$.
Remark: As Jack said, the expression can be written as a determinant:
$$
f(x) = \begin{vmatrix}a(x)&b(x)&c(x) \\ c(x)&a(x)&b(x) \\ b(x)&c(x)&a(x)\end{vmatrix}
$$
and this representation can also be used to compute the derivative
(omitting the argument for brevity):
$$f' = \begin{vmatrix}a'&b'&c' \\ c&a&b \\ b&c&a\end{vmatrix} +
\begin{vmatrix}a&b&c \\ c'&a'&b' \\ b&c&a\end{vmatrix} +
\begin{vmatrix}a&b&c \\ c&a&b \\ b'&c'&a'\end{vmatrix} \\
= \begin{vmatrix}c&a&b \\ c&a&b \\ b&c&a\end{vmatrix} +
\begin{vmatrix}a&b&c \\ b&c&a \\ b&c&a\end{vmatrix} +
\begin{vmatrix}a&b&c \\ c&a&b \\ a&b&c\end{vmatrix} = 0
$$