Below is a method of proving the Central Limit Theorem using moment generating functions.
Let $$X_{1},X_{2},...,X_{n}$$ be a sequence of i.i.d. random variables with expected value and variance $$E(X_{i}) = \mu < \infty, Var(X_{i})=\sigma ^{2}< \infty.$$
Now let
$$Z_{n}=\frac{\overline{X}-\mu }{\frac{\sigma }{\sqrt{n}}} = \frac{X_{1}+X_{2}+...+X_{n}-n\mu }{\sigma \sqrt{n}}.$$
We want to show that
$$\lim_{n \to \infty} M_{Z_{n}}(t)=e^{\frac{t^{2}}{2}}$$
where $M_{X}(t)$ is the moment generating function over some finite interval. In order to prove this, we can define a new random variable, $Y_{i}$, which is the normalized version of $X_{i}$. Thus,
$$Y_{i}=\frac{X_{i}-\mu }{\sigma }.$$
Then, we can say that $Y_{i}$ is i.i.d. with expected value and variance
$$E(X_{i}) =0, Var(X_{i})=1.$$
Using this information, we have $$Z_{n}=\frac{\overline{Y}-\mu }{\frac{\sigma }{\sqrt{n}}} = \frac{Y_{1}+Y_{2}+...+Y_{n} }{\sqrt{n}}.$$
Finding the moment generating function gives
$$M_{Z_{n}}(t)=E[e^{t\frac{Y_{1}+Y_{2}+...+Y_{n} }{\sqrt{n}}}] =E[e^{t\frac{Y_{1}}{\sqrt{n}}}]\cdot E[e^{t\frac{Y_{2}}{\sqrt{n}}}]\cdot ...\cdot E[e^{t\frac{Y_{n}}{\sqrt{n}}}]= M_{Y_{1}}(\frac{t}{\sqrt{n}})^{n}.$$
Lastly,
$$\lim_{n \to \infty} M_{Z_{n}}(t)=\lim_{n \to \infty} M_{Y_{1}}(\frac{t}{\sqrt{n}})^{n} = e^{\frac{t^{2}}{2}}.$$
This concludes the proof. However, how does one show analytically that this final limit does indeed equal
$$e^{\frac{t^{2}}{2}}?$$