Inspired by Aryabhata's answer, it will be proved that$$
\frac{α 2^α}{4} \cdot \frac{n^2}{S_n} + \sum_{k = 1}^n \left( \frac{k a_k}{S_k} \right)^α \frac{1}{a_k} \leqslant 2^α \sum_{k = 1}^n \frac{1}{a_k}.
$$
Step 1: If $f$ is a convex function on $[a, b]$, then for any $a \leqslant x_0 < x_1 < x_2 \leqslant b$,$$
\frac{f(x_1) - f(x_0)}{x_1 - x_0} \leqslant \frac{f(x_2) - f(x_0)}{x_2 - x_0}. \tag{1.1}
$$
Proof: \begin{align*}
(1.1) &\Longleftrightarrow (x_2 - x_0)(f(x_1) - f(x_0)) \leqslant (x_1 - x_0)(f(x_2) - f(x_0))\\
&\Longleftrightarrow (x_1 - x_0) f(x_2) + (x_2 - x_1) f(x_1) \geqslant (x_2 - x_0) f(x_1)\\
&\Longleftrightarrow \frac{x_1 - x_0}{x_2 - x_0} f(x_2) + \frac{x_2 - x_1}{x_2 - x_0} f(x_0) \geqslant f(x_1).
\end{align*}
Because $f$ is convex on $(a, b)$, then$$
\frac{x_1 - x_0}{x_2 - x_0} f(x_2) + \frac{x_2 - x_1}{x_2 - x_0} f(x_0) \geqslant f\left( \frac{x_1 - x_0}{x_2 - x_0} x_2 + \frac{x_2 - x_1}{x_2 - x_0} x_0 \right) = f(x_1).
$$
Step 2: For any $0 \leqslant α \leqslant 2$ and $n, t > 0$, there is$$
\frac{α 2^α}{4} \cdot \frac{n^2}{t + 1} + 2^α t \geqslant \frac{α 2^α}{4} (2n - 1) + \frac{n^α t}{(t + 1)^α}. \tag{2.1}
$$
Proof: Define $s = \dfrac{n}{t + 1}$, then\begin{align*}
(2.1) &\Longleftrightarrow \frac{α 2^α}{4} \cdot ns + 2^α \left( \frac{n}{s} - 1 \right) \geqslant \frac{α 2^α}{4} (2n - 1) + s^α \left( \frac{n}{s} - 1 \right)\\
&\Longleftrightarrow (s^α - 2^α) \left( \frac{n}{s} - 1 \right) \leqslant \frac{α 2^α}{4} (ns - (2n - 1))\\
&\Longleftrightarrow \left( \left( \frac{s}{2} \right)^α - 1 \right) (n - s) \leqslant \frac{α}{4} (ns - (2n - 1))s\\
&\Longleftrightarrow \frac{\left( \dfrac{s}{2} \right)^α - 1}{α} \leqslant \frac{(ns - (2n - 1))s}{4(n - s)}.
\end{align*}
Note that $f(x) = \left( \dfrac{s}{2} \right)^x$ is convex on $[0, +\infty)$, from (1.1) there is$$
\frac{\left( \dfrac{s}{2} \right)^α - 1}{α - 0} \leqslant \frac{\left( \dfrac{s}{2} \right)^2 - 1}{2 - 0},
$$
thus it suffices to prove (2.1) for $α = 2$, i.e.$$
\frac{2n^2}{t + 1} + 4t \geqslant 2(2n - 1) + \frac{n^2 t}{(t + 1)^2}. \tag{2.2}
$$
Now,\begin{align*}
(2.2) &\Longleftrightarrow 2n^2 (t + 1) + 4t(t + 1)^2 \geqslant 2(2n - 1)(t + 1)^2 + n^2 t\\
&\Longleftrightarrow (t + 2)^2 n^2 - 4(t + 1)^2 n + 2(2t + 1)(t + 1)^2 \geqslant 0.
\end{align*}
Because the discriminant with respect to $n$ is$$
(-4(t + 1)^2)^2 - 4(t + 2)^2 \cdot 2(2t + 1)(t + 1)^2 = -8t(t + 1)^2 \leqslant 0,
$$
then (2.2) holds, which implies (2.1) holds.
Step 3: For any $a_1, \cdots, a_n > 0$ and $0 \leqslant α \leqslant 2$, there is$$
\frac{α 2^α}{4} \cdot \frac{n^2}{S_n} + \sum_{k = 1}^n \left( \frac{k a_k}{S_k} \right)^α \frac{1}{a_k} \leqslant 2^α \sum_{k = 1}^n \frac{1}{a_k}, \tag{3.1}
$$
where $S_k = \sum\limits_{j = 1}^k a_j$.
Proof: It will be proved by induction on $n$. For the base case $n = 1$, because from (1.1) there is$$
\frac{\left( \dfrac{1}{2} \right)^α - 1}{α - 0} \leqslant \frac{\left( \dfrac{1}{2} \right)^2 - 1}{2 - 0} = -\frac{3}{8} < -\frac{1}{4} \Longrightarrow \frac{α 2^α}{4} + 1 \leqslant 2^α,
$$
then$$
\frac{α 2^α}{4} \cdot \frac{1}{S_1} + \left( \frac{a_1}{S_1} \right)^α \frac{1}{a_1} = \left( \frac{α 2^α}{4} + 1 \right) \frac{1}{a_1} \leqslant 2^α \cdot \frac{1}{a_1}.
$$
Now assume (3.1) holds for $n - 1$. To prove for $n$, by induction hypothesis it suffices to prove that$$
\frac{α 2^α}{4} \cdot \frac{n^2}{S_n} + \left( \frac{n a_n}{S_n} \right)^α \frac{1}{a_n} - \frac{α 2^α}{4} \cdot \frac{(n - 1)^2}{S_{n - 1}} \leqslant 2^α \cdot \frac{1}{a_n}. \tag{3.2}
$$
Define $t = \dfrac{S_{n - 1}}{a_n}$, then\begin{align*}
(3.2) &\Longleftrightarrow \frac{α 2^α}{4} \cdot \frac{n^2}{t + 1} + \left( \frac{n}{t + 1} \right)^α - \frac{α 2^α}{4} \cdot \frac{(n - 1)^2}{t} \leqslant 2^α\\
&\Longleftrightarrow \frac{α 2^α}{4} n^2 \cdot \frac{t}{t + 1} + \frac{n^α t}{(t + 1)^α} - \frac{α 2^α}{4} (n - 1)^2 \leqslant 2^α t\\
&\Longleftrightarrow \frac{α 2^α}{4} n^2 + \frac{n^α t}{(t + 1)^α} - \frac{α 2^α}{4} (n - 1)^2 \leqslant \frac{α 2^α}{4} \cdot \frac{n^2}{t + 1} + 2^α t\\
&\Longleftrightarrow \frac{α 2^α}{4} (2n - 1) + \frac{n^α t}{(t + 1)^α} \leqslant \frac{α 2^α}{4} \cdot \frac{n^2}{t + 1} + 2^α t,
\end{align*}
where the last inequality holds by (2.1). End of induction.