Let $a = \sqrt{2+i}$ and $K$ is the splitting field of minimal polynomial of $a$ over $\mathbb{Q}$. Prove that $Gal(K/\mathbb{Q})$ is $D_4$.
I find the minimal polynomial of $a$ is $p(x)=x^4-4x^2+5$ and its roots are $\sqrt{2+i},-\sqrt{2+i},\sqrt{2-i},-\sqrt{2-i}$. Let $b=\sqrt{2-i}$. So the splitting field of $p$ is $K=\mathbb{Q}(a,b)$. Also by rational root theorem, $p$ is irreducible over $\mathbb{Q}$. Thus $[\mathbb{Q}(a):\mathbb{Q}]=4$. Also $b\not\in\mathbb{Q}(a)$, and minimal polynomial of $b$ over $\mathbb{Q}(a)$ is $x^2-2+i$. Thus $[\mathbb{Q}(a,b):\mathbb{Q}]=[\mathbb{Q}(a,b):\mathbb{Q}(a)]\cdot[\mathbb{Q}(a):\mathbb{Q}]=2\cdot 4=8.$ Now since $K$ is the splitting field over $\mathbb{Q}$ of a separable polynomial, $K/\mathbb{Q}$ is Galois. Hence $|Gal(K/\mathbb{Q})|=8$. Hence the 8 automorphisms are $$a\to \begin{cases}a\\-a\\b\\-b\end{cases}\quad\text{and}\quad b \to \begin{cases}b\\-b\end{cases}.$$ From this how to conclude $Gal(K/\mathbb{Q})$ is isomorphic to $D_4$?
Thanks